SPATIAL ANALYSIS OF THE DROUGHT BY USING SATELLITE REMOTE SENSING AND GIS- A CASE STUDY AT MONARAGALA DISTRICT SRI LANKA Sandamali K.U.J.¹, Chathuranga K.A.M.¹, Ranaweera D.K.D.A.², Kumara B.A.S.C.² ¹Department of Spatial Sciences, Faculty of Built Environment and Spatial Sciences, General Sir John Kotelawala Defense University, Southern Campus, Sooriyawewa, Sri Lanka, Email: janakisandamali@kdu.ac.lk, 1 km/ km2 | No drought | In order to analyses the drought risk based on distance from water source, water sources in Monaragala district were classified into 3 classes in relation to their surface area and subsequently multiple buffers were created around water sources to define drought severity as shown in Table 4. Irrigated areas were then assigned with the lowest drought risk class value (i.e., No drought). Thereafter, irrigated area layer was union overlaid on a GIS platform with the layer representing drought risk based on distance from surface water sources. Hydrological drought risk map was generated by a matrix overlay between the resultant layers with the stream density layer. Table 4 Drought severity parameters based on water source in Monaragala District, Sri Lanka Modified from Mongkolsawat et al., 2001 | Surface area of | Buffer distance as area beyond | Drought severity | | |------------------------|--------------------------------|------------------|--| | the water body | water source | | | | $0 - 0.5 \text{ km}^2$ | 0 - 0.25 km | No drought | | | | 0.25 - 0.5 km | Slight drought | | | | 0.5 - 0.75 km | Moderate drought | | | | > 0.75 km | Severe drought | | | $0.5 - 5 \text{ km}^2$ | 0 - 0.5 km | No drought | | | | 0.5 - 1 km | Slight drought | | | | 1 - 1.5 km | Moderate drought | | | | > 1.5 km | Severe drought | | | $> 5 \text{ km}^2$ | 0 - 0.75 km | No drought | | | | 0.75 - 1.5 km | Slight drought | | | | 1.5 - 2.25 km | Moderate drought | | | | > 2.25 km | Severe drought | | Hydrological droughts are usually out of phase with or lag the occurrence of meteorological and agricultural droughts. It takes longer for precipitation deficiencies to show up in components of the hydrological system such as soil moisture, stream flow, and groundwater and reservoir levels (Hisdal and Tallaksen, 2003). Therefore, hydrological drought analysis was significant for completing drought severity analysis as well as the meteorological and hydrological drought investigation. The distribution of drainage patterns, water sources, and irrigated areas play a vital role in hydrological drought. In addition, catchment delineation and drainage density calculation also imperative for hydrological analysis. Raster-based digital elevation models (DEMs) play an important role in distributed hydrologic modeling supported by the GIS. With the intention of analyses drought severity based on drainage density, the first catchment area was generated by using SRTM DEM via ArcGIS hydrological analysis tool. Distance from the water source to nearby features is an essential calculation in drought monitoring(Hisdal and Tallaksen, 2003; Bhuiyan, Singh and Kogan, 2006). Therefore, accurate analysis of water sources and proximity class vital in the study. With the aim of examining the drought risk based on distance from the water source, water sources in the Monaragala district were classified into three classes in relation to their surface area and subsequently multiple buffers were created around water sources to define drought severity as shown in Figure 5. Figure 5 (a) Stream density-based Drought severity classification map and (b) Irrigated area and water source-based Drought severity classification map of Monaragala District Sri Lanka Afterward obtaining results for Stream density-based drought severity and Irrigated area and water source-based drought severity, to fulfil a complete hydrological analysis, the irrigated area layer was union overlaid on a GIS platform with the layer representing drought risk based on distance from surface water sources in order to obtain Hydrological drought. Then the resulted map shows the combined effect as a hydrological drought in the study area as in figure 6. Figure 6 Stream density, Irrigated area and water source based Hydrological Drought analysis map of Monaragala District Sri Lanka Even though there were seven river basins located within the Monaragala District there was severe hydrological drought due to the lack of water scarcity. The hydrological drought was the foremost affected drought in the entire area. As a result, these impacts are in the phase with impacts in other economic sectors. For example, a precipitation deficiency may result in a rapid depletion of soil moisture that is almost immediately affected by agriculturalists. Therefore, it is badly affected the cultivation which was considered as the main occupation of mainstream of the people in the area. ## 3.4 Drought Risk Area Map of Monaragala District The overall approach of the study was to find the drought severity of the Monaragala in a spatial context. Other than relay on traditional meteorological drought mapping here used main three aspects of the drought in order to obtain the severity of the drought. In previous steps obtained drought according to the different characteristics of it. In addition, in here built a drought map which is the combined representation of all three aspects. Hence, the drought risk area map of the Monaragala district was generated by using matrix overlay operations. In raster overlay, each cell of each layer references the same geographic location. That makes it well suited to combining characteristics for numerous layers into a single layer. The drought severity values were assigned to each characteristic and mathematically combine the layers and assign a new value to each cell in the output layer. Therefore, raster overlay manipulates between, meteorological, agricultural, and hydrological drought risk map layers as illustrated in Figure 7. This map was integrated using ArcMap 10.1 Software environment. Figure 7 Drought Risk area map (Combination of Meteorological, Agricultural and Hydrological drought) of Monaragala District Sri Lanka The accompanying percentage area affected by the combined risk. High risk prevails in nearly 7% percentage, and more than half of the area (58%) affected moderate drought conditions as shown in Figure 8. Figure 8 Spatial percentage of coverage of the Drought Risk area (Combination of Meteorological, Agricultural and Hydrological drought) in the Monaragala District Sri Lanka The methodology utilized in this study facilitates drought risk identification meteorologically, agriculturally, and hydrologically. Subsequently, the major causes affected for severe drought risk areas can be identified through the results of the research and the Table 5 explains the contribution of each factor relating to the drought conditions of Monaragala district. Table 5 Percentage areas of Meteorological, Agricultural and Hydrological drought severity in Monaragala District, Sri Lanka | Type of drought | No Drought | Slightly Drought | Moderately Drought | Server Drought | |------------------------|------------|------------------|---------------------------|----------------| | Combined Drought | 0.1% | 35.1% | 58.2% | 6.6% | | Meteorological drought | 19.9% | 30.0% | 30.2% | 19.9% | | Agricultural drought | 14.7% | 53.7% | 26.7% | 4.8% | | Hydrological drought | 1.1% | 5.7% | 44.8% | 48.3% | The percentage of severe drought risk areas was calculated to be 19.9%, 4.8%, and 48.3% in meteorological, Agricultural, and hydrological drought, respectively. Hence, hydrological drought can be identified as the major cause of the drought in the Monaragala district with 48.3% of the severe drought risk area. But when carefully observing the results could be able to identify Moderate drought condition was the dominant pattern of drought in Monaragala. #### 4. CONCLUSION AND RECOMMENDATIONS The main objective of this study is to find out the drought severity in the Monaragala district. In addition, analyzing drought severity in a spatial context such as meteorological drought, agricultural drought, and hydrological drought was in the sub-objectives. In meteorological drought, it identifies the relationship between rainfall and drought severity, in agricultural drought, it identified the interconnection between the present condition of the vegetation and its severity and moreover under the hydrological drought, it identified the spatial distribution of the water sources and the severity of the drought in a scientific and analytical way. Finally, it found the appropriate drought risk areas can be delineated by the integration of satellite, meteorological, and other ancillary data. When considering drought, it has a strong positive correlation with the above three factors such as the precipitation, vegetation cover, and the location of hydrological resources in particular area, and by the results it proves that relationship. Drought is a natural hazard that involves many factors, including meteorological and climatological parameters, having complex inter-relationships. Drought definitions vary from region to region and may depend upon the dominating perception, and the task for which it is defined. Other than relying on conventional drought event counting method here present most effective method of drought mapping in spatial context by using the three aspects of drought such as meteorological, hydrological, and agricultural. Identifying patterns of drought and finding its associations with various indices derived from the conventional method and remote sensing techniques are becoming important for monitoring of this natural hazard. Rainfall varies spatially and temporally throughout the whole Monaragala district. On analyzing the rainfall for all the 20 stations in the country from 2005 to 2019 indicate how to change the pattern of precipitation with the time. It was found that there is a large variation in rainfall especially in the two monsoon periods. The occurrence of drought cannot be monitored by comparing the relative rainfall observed in various stations. To overcome these limitations, the use of a Decile for drought monitoring was highlighted. Further ordinary Kriging interpolation techniques were used in order to visualize it spatially. Among all the techniques Ordinary kriging was the most suggested method for Sri Lanka and manipulated over the study. MODIS NDVI is found to be widely and extensively used for the detection and monitoring of the drought phenomenon for almost all regions of the world affected by drought effectively and efficiently. With the existence of such a dataset, it becomes easy and effective to monitor a natural phenomenon. But the datasets generally contain some of the errors introduced to the data by instrumental and data processing. So, in order to identify and remove such unwanted noise and signals from the data, the atmospheric and geometric procession was used. NDVI timesseries was subjected to scale to VCI in order to estimate the vegetation health and monitored drought. To monitor drought effectively and for the identification of false alarm regions, drought identified with NDVI helped in monitoring the drought effectively thereby eliminating the false drought detected areas. It was observed that NDVI generally have positive strong correlations with the forest, wasteland land cover classes, the correlations were found to be negative in woodlands, urban, and croplands. The vegetation of the area is totally dependent on the rainfall. This correlation defines rainfall as a basic and major factor in prone to drought, arid area. The NDVI is very low in a particular area, this place is more vulnerable to drought. Stream density and the delineation of catchment provided the impact of hydrological drought on the area which was conceded as the highest influencing type of drought to the Monaragala district as indicated in the study. The pattern of circulation of water resources and the streams network was significant for the drought analysis. The distribution of water bodies's and the density of the streams show the importance of having better water management for the area in order to get rid of the hydrological drought. Furthermore, as the final risk map gives the areas facing a high drought risk, a detailed study of these areas in terms of soil, water availability, temperature conditions, rainfall, crops grown, the economic importance of the area and the social conditions prevalent can further help in preparing better management plans. Final risk areas delineated from the integration of various data sources have given a correct pattern of the risk areas based on last fifteen years of spatial data. However, since no published reports were available for the validation of the results, therefore there is an urgent requirement of the validation of the maps being prepared. Moreover, it recommends using appropriate water management for the Monaragala district which was highlighted as the server in the aspect of hydrologically. And also, there was significant demand for proper water management especially for the Siyambalanduwa area which was identified as the most vulnerable divisional secretariat division from the drought. Further presented methodology was significant for future analysis and recommend using respective departments in order to generate a correct reflection of the drought. #### References - Bhuiyan, C. and Kogan, F. N., 2010 'Monsoon variation and vegetative drought patterns in the Luni Basin in the rain-shadow zone', International Journal of Remote Sensing, 31(12), pp. 3223–3242. doi: 10.1080/01431160903159332. - Bhuiyan, C., Singh, R. P. and Kogan, F. N., 2006 'Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data', International Journal of Applied Earth Observation and Geoinformation, 8(4), pp. 289–302. doi: 10.1016/j.jag.2006.03.002. - Chandrapala, L. and Wimalasuriya, M., 2003 'Satellite measurements supplemented with meteorological data to operationally estimate evaporation in Sri Lanka', Agricultural Water Management, 58(2), pp. 89–107. doi: 10.1016/S0378-3774(02)00127-0. - D.M.S Dissanayake, 2018 Island Wide Construction Raw Material Survey, Report On Monaragala District. - DMC (2017) Center for Excellence in Disaster Management & Humanitarian Assistance. Available at: http://reliefweb.int/map/chile/chilelocation-map-2013. - Dutta, D. et al., 2015 'Assessment of agricultural drought in Rajasthan (India) using remote sensing derived Vegetation Condition Index (VCI) and Standardized Precipitation Index (SPI)', Egyptian Journal of Remote Sensing and Space Science. Authority for Remote Sensing and Space Sciences, 18(1), pp. 53–63. doi: 10.1016/j.ejrs.2015.03.006. - Ekanayake, E. and Perera, K., 2014 'Analysis of Drought Severity and Duration Using Copulas in Anuradhapura, Sri Lanka', British Journal of Environment and Climate Change, 4(3), pp. 312–327. doi: 10.9734/bjecc/2014/14482. - Gibbs, W. J. 1975 Drought: Lectures presented at the 26th session of the WMO Executive Committee, Special Environmental Report No. 5. - Han, P. et al., 2010 'Drought forecasting based on the remote sensing data using ARIMA models', Mathematical and Computer Modelling. Elsevier Ltd, 51(11–12), pp. 1398–1403. doi: 10.1016/j.mcm.2009.10.031. - Hisdal, H. and Tallaksen, L. M., 2003 'Estimation of regional meteorological and hydrological drought characteristics: A case study for Denmark', Journal of Hydrology, 281(3), pp. 230–247. doi: 10.1016/S0022-1694(03)00233-6. - Karnieli, A. et al., 2010 'Use of NDVI and land surface temperature for drought assessment: Merits and limitations', Journal of Climate, 23(3), pp. 618–633. doi: 10.1175/2009JCLI2900.1. - Leng, G., Tang, Q. and Rayburg, S. 2015 'Climate change impacts on meteorological, agricultural and hydrological droughts in China', Global and Planetary Change. Elsevier B.V., 126, pp. 23–34. doi: 10.1016/j.gloplacha.2015.01.003. - Lp Daac, 2014 'Vegetation Indices 16-Day L3 Global 500m', MODIS Data Products, p. 1. Available at: https://lpdaac.usgs.gov/products/modis_products_table/mod13a1. - Mannocchi, F., Todisco, F. and LORENZO, V. 2004 'Agricultural drought: indices, definition and analysis', in UNESCO/IAHS/IWIIA symposium. - Monkolsawat, C. et al., 2001 'An Evaluation of Drought Risk Area in NE Thailand.pdf', Asian Journal of Geoinformatics, pp. 33–44. - Myneni, R. B. et al., 2002 'Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data', Remote Sensing of Environment, 83(1–2), pp. 214–231. doi: 10.1016/S0034-4257(02)00074-3. - Patel, N. R. et al., 2012 'Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data', Environmental Monitoring and Assessment, 184(12), pp. 7153–7163. doi: 10.1007/s10661-011-2487-7. - SAARCDMC, 2010 SAARC Disaster Management Centre , New Delhi Afghanistan National Disaster Management Authority. - Salehnia, N. et al. 2017 'Estimation of meteorological drought indices based on AgMERRA precipitation data and station-observed precipitation data', Journal of Arid Land, 9(6), pp. 797–809. doi: 10.1007/s40333-017-0070-y. - Sharma, A., 2006'Spatial Data Mining for Drought Monitoring: An Approach Using temporal NDVI and Rainfall', p. 75. Available at: http://www.itc.nl/library/papers_2006/msc/iirs/sharma.pdf. - Suwanwerakamtorn, R. et al., 2005 'Drought assessment using GIS technology in the nam choen watershed, ne thailand.', Asian Association on Remote Sensing 26th Asian Conference on Remote Sensing and 2nd Asian Space Conference, ACRS 2005, 1(January), pp. 550–558. - Thenkabail, P. S. and Rhee, J., 2017 'GIScience and remote sensing (TGRS) special issue on advances in remote sensing and GIS-based drought monitoring', GIScience and Remote Sensing. Taylor & Francis, 54(2), pp. 141–143. doi: 10.1080/15481603.2017.1296219. - UNISDR, U. N. secretariat of the I. S. for D. R., 2009 Drought Risk Reduction Framework and Practices: Contributing to the Implementation of the Hyogo Framework for Action. Available at: http://www.unisdr.org/preventionweb/files/11541_DroughtRiskReduction2009library.pdf.